SSブログ

中国製7石トランジスタラジオキットのゲルマニウムトランジスタ化~その2~ [ラジオ]

2018年8月11日の日記

完成基板2.jpg やっと,鳴るようになりました......。

さて,前回は中国製の7石(実際には6石ですけど)トランジスタラジオキットをAmazonで購入して,ゲルマニウムTrで作り始めました。

とりあえず,まずは低周波部から組み立てて,順次,テストしていきます。

案の定,ウンともスンとも言いません。それに,普通はスイッチが入ったとたん,ガリッと音がするのが普通ですが,それすら言わないので,これは悪い予感がします.....。

まず,ウンともスンとも言わないのは低周波部のトラブルが予想されます。

問題はやはり,低周波段の2SB171のバイアス回路にありました。

ここは前回も指摘しましたように,S9013Hという中国製Trを固定バイアスで使っています。これは危険な回路で,個々のTrの特性に依存しますので,このままだと簡単に他のTrと入れ替えることができません。おまけに温度的に不安定で,もともとTrという素子は温度係数が正のため,温度が上昇するとさらに電流が流れやすくなる性質があり,危険なのですが,この回路ではそれを防ぐことができません。

Tr固定バイアス回路1.jpg固定バイアス回路

このとき,コレクタ電流ICは次の通りとなります。また,Trは導通状態ではシリコンでVBE=0.6V,ゲルマで0.2Vとほぼ一定と考えてよいので,Vccが一定で,同じTrを使うなら,コレクタ電流はRBだけで決まっちゃうことになります。

          Ic計算式(固定バイアス).jpg       

問題はIChFEの関数になっちゃうことで,hFEというのはTrの品種によっても,また,同じTrでも製造時のばらつきが非常に大きく,平気で2倍や3倍くらいは変わっちゃうので,この回路にしちゃうとほかのTrと差し替えができません。おまけにTrは温度係数が正なので,温度が上昇すると際限なくコレクタ電流が流れてしまうことになります。熱暴走ですね。

そこで,こういうことがないように考えられたのが電流帰還バイアスで,エミッタに抵抗が入っているのが特徴です。特にゲルマの時代は電流帰還バイアスが定位です。▼の図の (a) が正規? の電流帰還バイアス回路です。

Tr電流帰還バイアス回路1.jpg電流帰還バイアス回路

ベースに分流回路を設け,そこにベース電流より多め(10倍以上)の電流を流してやれば,ベース電位はほぼ固定されちゃいますので,自動的にコレクタ電流も決まってしまいます。

          Ic計算式(電流帰還バイアス).jpg

さっきの固定バイアスと違うのは,分流回路にIBより十分大きな電流を流す,と言う条件がありますが,hFEが出てこないことで,Trのばらつきを抑えることができます。

この回路だと温度的にも安定で,仮にコレクタ電流が増えても自動的にエミッタ電位が上昇し,コレクタ電流を制限する方向に作用します。ちょっと負帰還みたいな感じなので,これを電流帰還というのですが,わかりにくい用語だといつも思います。ちなみに真空管の自己バイアスはこの作用があり,過電流が流れると自動的にカソードの電位が上昇し,バイアスが浅くなる(プレート電流が減る)ようになっていて安全です。

Trのパワーアンプに終段のTrのエミッタに0.22Ωや0.47Ωといった低抵抗が入っているのはそのためで,これを省略すると危険です。金田式アンプなんかでは省略してしまっているのですけどね.....。安全を考えたら入れておくべきです。

ただ,どういうわけか,シリコンの時代になると,R2を省略してしまった(b)の回路が増えてきます。Cherryの6石や8石のTrラジオキットもそうですし,シリコンTrを使った市販ラジオはほぼこれです。Trのばらつきが減ってきたからとか,ひとつでも部品を減らしたい,と言うこともあったのでしょうけどね.....。

なぜかこれも電流帰還バイアスの一種,と言うことになっているのですが,iruchanはこれは固定バイアスと言うべきだと思っています。やはり安定性の面では (a) の方が優秀なのは言うまでもありません。今回の中国製キットも高周波部はこの回路になっています。

先ほども書きましたが,低周波部は固定バイアスになっていて,最初,試しにそのままやってみたら思いっきり発振してスピーカから強烈な音がします。オシロで見てみると,4kHzくらいで発振していました。やはり固定バイアスはダメです。

しかたないので,エミッタに抵抗を入れ,きちんと電流帰還バイアスにしたら発振が止まりました。やはりゲルマニウムTrは電流帰還型バイアスでないとダメなようです。

そこで,まずは固定バイアスとなっている,低周波段の定数をLTspiceで決めて抵抗を変更しました。基本的にはA級シングルアンプなので,動作点はロードラインの中点に来るようにします。

今回,低周波用ゲルマニウムTrのSpiceモデルも作りました。東芝の2SB542SB56を作っておきましたので,ご利用ください。この2種類があれば,電圧増幅用と電力増幅用のTrモデルとして使えるでしょう。ゲルマのSpiceモデルはネットを探してもほとんど見つかりませんので,ご利用いただければ幸いです。高周波TrとしてはNECの2SA56のモデルを作りましたので,詳しくはこちらをご利用ください。

Here are the LTSpice models of Japanese low-frequency germanium transistors. 

.model 2SB54 PNP (IS=2.21785661056217E-10, BF=80, EG=0.67, VAF=67, RB=10, RC=1.53846153846154, TF=1.59154943091895E-07, CJC=42p, CJE=63p, MFG=TOSHIBA)

.model 2SB56 PNP(IS=5.28833988298141E-10, BF=56, EG=0.67, VAF=71, RB=10, RC=3.6231884057971, TF=1.59154943091895E-07, CJC=42p, CJE=63p, MFG=TOSHIBA)
 
この,.modelではじまる部分を,LTspiceのstandard.bjtファイルのどこかにコピペしておけば使えるようになります。

XH108-2 低周波部Spice.jpg LTspiceでシミュレーションです。

        ☆         ☆         ☆

ようやくこれで低周波部が動作するようになり,スピーカからもガリガリと音がするようになりました。

ただ,まだおかしい......orz。

どうにも音量が非常に小さいのです。

さんざん原因を調べたところ,やはり5kΩの可変抵抗が不良のようです。どう見てもチャチだし,壊れそうと思っていました。しかたないので,Alpsの基板用に交換しました。

また,出力段のバイアスは河童さんからいただいた基板についていた,SV31を使います。これはバリスタです。

ゲルマニウムTrの時代は,温度補償用によく用いられました。電気的にはDiですが,温度特性がTrと同じのため,出力段の素子の温度補償用に用いられます。オリジナルの回路も1N4118というDiを使っています。

SV31底面.jpg 三洋のバリスタSV-31底面

う~~ん,ひっくり返して底を見たら,ちょっと面白いことに気づきました。

実を言うと,バリスタというのはP-N接合面を持っていて,Diと同じ構造なのですが,出来損ないのTrを使っていた,と言う話があります。Trは初期の頃は非常に歩留まりが悪かったのはよく知られていますが,コストも高いので,ひとつP-N接合ができなかったとか,特性が悪くてリジェクトされたTrの脚を1本切って,バリスタにしていることがあります。SV-31ももとは3本脚だったようで,そういう感じです。英MullardのOCP70というフォトTrも,OC70の出来損ないだという話を以前書きましたけど,バリスタもそのようだったようです。

ところが....。

いつもはiruchanはここにサーミスタを使っているのですが,SV31を使ってみると厄介なことに気づきました。サーミスタだと動作電流でバイアスを自由に変更できますが,バリスタだとそうはいきません。使用してみたら出力段の2SB134に100mAくらいの電流が流れて,触ると熱くなっています。まずい......。

残念ながら,サーミスタだとサーミスタに電流を流すための抵抗を大きくするとバイアスが小さくなりますが,バリスタだと調整できません。しかたないので,ここはバリスタをあきらめ,いつもの通りサーミスタにしました。

さて,ようやくこれで低周波部はOKとなったので,次は局発から調べていきます。

残念ながら,こちらも動作していません......orz。

本機は高周波部(IF含む)はすべて電流帰還型バイアス回路となっていますが,シリコンTrの場合は,少々手抜き? の (b) のバイアス回路となっていることが多く,今回もオリジナルはこうなっています。

LTspiceで回路定数を決め,きちんと電流帰還型バイアスにしてようやく局発が動作するようになりました。

        ☆         ☆         ☆

さて,ここまで来たらトラッキング調整を先に済ませてしまいます。最後でいいんですけど,ゲルマニウムTrを使っているし,例によってカバレージでトラブるので先に調べておこうと思います。高い方で発振が止まる,なんてこともよくありますので.....。

局発はAMラジオの場合,受信周波数+IF分だけ高い周波数を発振させないといけません。今回,IFは450kHzで作ることにしますから,985kHz~2055kHzで発振すればOKです。

またまたところが.....。

予想してたんですが,上が厳しい~~!!

どうやっても1800kHzくらいにしかなりません。これじゃ,受信上限は1350kHzということになっちゃいます[雨][雨]

オリジナルのシリコンTrだと問題ないのかもしれませんが,バリコンを交換するしかなさそうです。

どー見てもチャチなバリコンだったし,これはアカンのちゃうか? と思っていたらやっぱりでした。

しかたないので,やはり日本製のミツミのPVC-20Yに交換したら楽勝で2200kHzくらいまで発振しますから,ちゃんとカバレージが取れました。

頭に来て,LCRメータで容量を調べました。

中国製7石Trラジオバリコン
OSC 5.5pF ~  63.8pF
ANT 5pF ~  144.7pF
 
ミツミ PVC-20Y
OSC 4.44 ~ 64.6pF
ANT 4.47 ~  145.3pF
  
なんだ,悪くないじゃないか,と思ってしまうのですが,トリマがおかしく,メインのバリコンの下限位置だとちゃんと調整が効くのですが,上限位置だとトリマを回してもほとんど変化しません。
 
局発上限.jpg 局発の波形
 
調整は,いつも通り,下限をOSCコイル(コア赤)で決め,上限はバリコンのトリマ(O)であわせます。このとき,局発のTr(2SA353)のコレクタにデジタルオシロや周波数カウンタをつなぐと調整ができます。
 
        ☆         ☆         ☆

次はIFTのコアの調整をしして,きちんとIFに同調させておきます。テストオシレータを450kHzで発振させ,適当な電線をつないでおくと,バーアンテナが受信します。テストオシレータは1kHzくらいで変調できるので,AM変調した正弦波を出しておいて音が最大になるようにコアを調整すればOKです。

ちなみに,iruchanは455kHzじゃなく,450kHzで調整することにしています。PLLシンセサイザのラジオは450kHzとなっていることが多いです。なお,どういうわけか,本機は465kHzのようです。中国はIFが465kHzなんでしょうか......。ちなみに,日本で455kHzと決められたのは1950年のことで,戦後初期のスーパーのラジオは463kHzです。

さて,ここまで来たら普通は放送が聞こえるはず.........なんですけど......。

まだ,ほとんど放送が聞こえません。ダイヤルを回すとかすかに放送が聞こえるところがありますが,ほとんどガーッと言っているだけです。

う~~ん,困ったな~~~

とりあえず,こうなったら疑うのはIFの発振。オシロをつないで各IFのコレクタの電圧波形を見てみます。

すると,やはりIFの1段目が2Vrmsくらいに強烈に発振していました......orz。周波数も480kHzくらいです。

IF1発振.jpg あちゃ~~~~[雨][雨]

まあ,これはよくあることで,今までiruchanも自作のラジオでは必ず経験すると言っていいくらいです。さすがにCherryの6石や8石のキットはそういうことはなく,やはり優秀なキットだと思いました。TrのスーパーのラジオでIF2段のものは必ずと言っていいくらい,発振してしまいます。

原因は,やはりゲイン過大,というのが最大の問題です。

hFEの低いTrに交換する,と言うのも手ですが,よほど初期のTrでない限り,hFEの小さなTrというのはありませんし,そもそも,普通のTrラジオはシリコンTrなんですが,これだったら最低でもhFEは100くらいはありますから,そんなTrを使っていてもメーカー製のラジオは発振したりしませんから,Trの交換は最後の手段と考えます。

手としては,負荷となっているIFTの1次側インピーダンスを下げることです。

具体的には,パラに100kΩくらいの抵抗を接続してQをダンプします。普通はこれで直ります。日立製ゲルマニウムTrを使った自作スーパーもこれで止まりました。

でも,これはダメでした。やはり強烈に発振します。

しかたないので中和を試してみます。

IFTの反コレクタ側のピンからベースに数pFのセラミックコンデンサをつないでみます。

いろいろと容量を変えてみましたが,やはり発振が止まりません。

次に疑うのはIFTとアンテナコイルが結合していること。場合によってはIFT同士が結合していることもありますが,たいていはバーアンテナがIFの漏れを拾って発振しています。

特に,今回の基板が小さいので,アンテナコイルが近接していて,これはあり得そうです。

でもこちらもバーアンテナの接続を外しても発振が止まらないので,IFTと結合しているわけではなさそうです。

ほかには,検波のDiのあとのフィルタの定数が悪く,AGC回路に高周波が漏れているというようなことが原因だったりします。特に,HiFi用ということでここのカットオフ周波数を高くしたり,負荷インピーダンスを小さくしているとこういうことがあります。

あとは,コレクタ電流が大きすぎると発振することがあります。IF段は最大でも1mAくらいが普通で,あまり大きな電流にしてはいけません。結局,本機は0.2mAくらいまで電流を下げました。-Vccからベースに入っている抵抗を最初は22kΩにしていたのですが,最終的に100kΩに上げています。ちなみに,CherryのCK-606は330kΩを使っています。

そこで,820kΩにしたら発振は止まったのですが,さすがにやり過ぎ,という感じで,結局,IF1のベース抵抗は100kΩとしました。

これでようやく局が入るようになり,高校野球中継が入るようになりました[晴れ][晴れ]

最終的な中国製7石Trラジオキットのゲルマニウム版回路は下記の通りとなりました。

7管式収音机回路GE版.jpg

まだ,感度不足で,NHKでもボリウム最大でようやく音が聞こえる,と言う次第なんですが,つづきはまた次回とします。


nice!(6)  コメント(1) 

nice! 6

コメント 1

通りすがり

私もこのキットを最近aitendoで購入し、組み立てずに眺めている状態です。貴殿のこのページをみて私もゲルマ化で組み立てようと考えていますが、回路図を見る限り、トランジスタが固定バイアスな所と、デカップリング回路は変更する必要があるのですね。非常に参考になりました。
by 通りすがり (2021-04-10 15:04) 

コメントを書く

お名前:[必須]
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

※ブログオーナーが承認したコメントのみ表示されます。

Facebook コメント